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Abstract. Vision Transformer is a novel approach in artificial intelli-
gence, focusing on image classification. Despite its potential, ViT’s em-
phasis on global data processing presents accuracy challenges compared
to local data processing methods like Convolutional Neural Networks
(CNN). To address this, we propose two methods. The first integrates
a portion of the Residual Network to replace token transformation lay-
ers, allowing for local data feature extraction and improved relationship
learning between tokens. The second solution suggests transforming lay-
ers in the bottleneck component into types that process in the Quater-
nion hypercomplex domain, enhancing the multidimensional representa-
tion of data. Both solutions aim to leverage the strengths of CNN and
ViT, thereby indirectly improving image classification accuracy.

Keywords: Image classification - Deep learning - Vision Transformer -
Quaternion Algebra - Multilayer Perceptron Algebra.

1 Introduction

Over recent years, artificial intelligence has seen significant advancements in
machine learning models. Among these models is the Vision Transformer (ViT),
a new network model primarily used for computer vision tasks such as image
classification.

However, ViT’s focus on global data processing rather than local data pro-
cessing has been a weakness, leading to subpar performance compared to con-
volutional neural network models when applied in a time domain.

This issue has attracted attention from researchers worldwide, leading to
various proposed solutions such as Sharpness-Aware Minimization (SAM) [12]
and Orthogonalization-Guided Feature Fusion [13][14] to improve the accuracy
of the Vision Transformer model.

In this research, we propose two different approaches to enhance the ViT
model. These approaches can be seen as a combination of the CNN model with
ViT, along with the conversion of real numbers to Quaternion numbers with
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adjusted layers. To evaluate the effectiveness of the proposed methods, we con-
ducted tests on three well-known datasets: CIFAR10, CIFAR100, and GTSRB.

The research is divided into five parts. The second part provides background
information on related studies such as Vision Transformer, mathematical trans-
formations on Quaternion numbers, setting up a convolutional neural network in
the Quaternion domain, a brief introduction to Residual Networks, and weight
initialization in the Quaternion number domain. The third part discusses the
research method, the process of constructing the proposed solutions, includ-
ing Quaternion Batch Normalization, Quaternion Fully Connected (QFC) layer,
and the implementation of the proposed solutions. The fourth part presents the
experimental setup, evaluation method, and research results. Finally, the fifth
part concludes the research by summarizing the main contributions and future
research plans.

2 Related Methods

2.1 Vision Transformer

The Vision Transformer (ViT) is a type of transformer designed for computer
vision. Transformers were introduced in 2017 [5] and widely applied in natural
language processing. In 2020, they were adapted, replacing some components to
learn relationships between image patches rather than words, making it partially
resemble Convolutional Neural Networks (CNNs) to better suit computer vision.
This modified transformer is referred to as ViT.

The basic structure of ViT involves dividing the input image into a sequence
of patches and encoding these patches into tokens before applying them to a
standard Transformer architecture. ViT’s attention mechanism transforms the
representation vectors of image patches, capturing semantic relationships be-
tween patches. This is analogous to natural language processing (NLP), where
transformer-encoded vectors combine semantic relationships between words, from
syntax to meaning.

ViT has found applications in image recognition, image segmentation, etc.
The foundational architecture, inspired by a 2020 paper [7], draws inspira-
tion from the BERT (Bidirectional Encoder Representations from Transformers)
model introduced in October 2018 [8]. The input image is divided into equally-
sized patches, each passing through a linear operator to convert it into a vector,
known as "patch embedding." The position of each patch is also transformed
into a vector using "position encoding." These two vectors are then added and
processed through a series of transformer encoder layers.

In essence, the architecture transforms an image into a sequence of vector
representations. To utilize these vector representations for downstream applica-
tions, additional network modules are added. For image classification, a block of
MLP (Multilayer Perceptron) [9] is stacked on top (output of the Transformer
Encoder) to produce a probability distribution for labels. In the author’s paper,
a linear-GeLU-linear-softmax MLP block is used.
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Fig. 1. Vision Transformer

2.2 Quaternion algebra

In the research on applying Quaternions to depth prediction in images [4], the
study discussed the representation of Quaternions and basic operations such as
addition and multiplication between two Quaternions. Specifically, as outlined
below.

g=q+V =q+qi+aej+ak (1)

Addition operation of two Quaternions p and q.

p+a=(po+a)+ vy +v;) @)
= (po+qo) + (p1 + @1)i + (P2 + q2)j + (p3 + @3)k

Multiplication operation of two Quaternions p and gq.

Pq = podo — V3-Vq + (PoVy + G0y + Vi @ V)
= (pogo — P190 — P2q2 — P393)
+ (Pog1 + p1go + P2g3 — P3qa)i (3)
+ (Pog2 — P1g3 + P2go + P3q1)]j
+ (Pogs + p1a2 — P2g1 + P3qo)k

2.3 Quaternion-valued Convolutional Neural Networks

A neural network utilizing quaternion algebra number representation can be
constructed by employing quaternion operations (Section 2.2). In a neural net-
work using simple quaternion numbers with weights W = W, + m,m =
(W1, Wy, W3), and input = ¢ + \7;, \7; = (21,9, x3) the forward multiplica-
tion is performed using quaternion multiplication as follows:

WJZZWOJZO—W'\E)-F(WO\T@}-F%\E)-FVWX‘Tg) (4)
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Although current machine learning platforms do not support the use of quater-
nion number representations, operations on quaternions can still be expressed
using real numbers. Specifically, this can be constructed as follows:

R[W*X} WO *W3 *Wl *Wz o
I [W * X} o —W3 WO W2 —W1 1
j [W * X] - W1 —W2 W() —W3 * i) (5)
K [W * X} W2 W1 W3 WO T3

2.4 Residual Network

Residual Network (ResNet) is a unique type of neural network introduced in
2015 by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun in their
paper "Deep Residual Learning for Image Recognition"[1]. ResNet models have
shown remarkable success, securing the top position in the ILSVRC 2015 classifi-
cation competition with an impressive top-5 error rate of 3.57%. To overcome the
challenges of vanishing/exploding gradients during the training of deep neural
networks, ResNet introduced an innovative architecture known as the Residual
Network. This architecture incorporates the concept of a Residual Block, using
skip connections to link the activations of consecutive layers by bypassing certain
intermediate layers. This technique allows the network to learn residual map-
pings instead of fundamental mappings, facilitating the training of deep neural
networks without encountering the issues associated with vanishing/exploding
gradients.

2.5 Quaternion Weight initialization

In the research paper "Quaternion Convolutional Neural Networks for Depth
Estimation" [4], a weight initialization method in the Quaternion domain was
developed, inspired by the methods proposed by He [2] and Glorot [3].

The weight Glorot and He weight initialization for Quaternion equations are
followed as:

2
D(W) = = 4UélOTOtQuate7‘nion

Nin + Nout
1 (6)

2(nzn + nout)

= OGlorotQuaternion —

2
D(W) = = 4(71%{6Quatemion

Min
) (7)

= OHe =
Quaternion \/m
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3 Methodology

3.1 Quaternion Batch Normlization

Normalization is an essential component in the process of training neural net-
works, bringing several benefits such as normalizing the activations of hidden
layers to expedite the training process, and smoothing the loss function, thereby
aiding in optimizing the trained network model. In 2015, the authors Sergey
Toffe and Christian Szegedy proposed a normalization solution called 'Batch
Normalization [10],” which has been applied in subsequent convolutional neural
networks. The implementation formula is as follows:

(z — Elz])
T=—ot v+ 8
VVar[z] + ¢ ! ®)
In this equation, where x represents the input data, Var[z] = L.EB [05?]

m—1
(with m being mini-batches and oz? being their sample variance) is the esti-
mated variance, ¢ = le — 5 is the epsilon parameter designed to prevent division
errors when Var[z] = 0, which would result in division by zero. v and § are
learnable parameter vectors with a size of C (where C is the size of the input
data). However, in default cases, we often set the parameters of v to 1 and the
parameters of 5 to 0 for simplicity. Therefore, the formula is as follows:

VVar[z] + ¢

However, the normalization method mentioned above is suitable only for pro-
cessing in the real-number domain and platforms that support Quaternion. For
the Quaternion domain, which involves representations from various Quaternion
spaces, this method is not applicable. Therefore, we need to adjust some opera-
tions of the method to make it usable for Quaternions on platforms that do not
support it.

Firstly, we set the parameter ¢ = le — 5 and two vectors with parameters
Yiryigk) @ 1 and B, k) as 0, where (r,4,7, k) represents the Quaternion do-
mains (r for the real domain, and i, j, k for the three imaginary domains). This is
done to simplify the formula setup for the method. Then, we consider an input
Q in the form of a Quaternion:

Q=Q,+Q;+Q; +Qx (10)

We will convert that to a vector including the Quaternion elements.
Q = [@rQiQ;Qx]" (11)

The elements can be set as follows:
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Qr —FE {Qr]]
_ _ | Qi E[Qi
e-rla = |5 (12)
Qr — E[Q4]
The variance is set up as follows:
Var[Ql = E|IQP] - ElQP (13)
However, We know E[Q]? = 0, so the variance has the following formula:
Var[Q] = E[1QF] (14)
+ oo
varlQl = E@f] = [ e @ (15)

However, to simplify the problem, we perform the modulus operation on the
input @ beforehand. The formula is as follows:

Q= Q2+ @+ Q3+ @} (16)

From 15 and 16 we have:

Var[Q] = E[|Q*]
= E[Q; + Q7 + Q} + Qi (17)
= E[Q? + E[Q?) + E[Q?] + E[Q}]

Considering formulas 12 and 17, we can establish the normalization formula
for the Quaternion domain as follows:

QT - E [QT]
Qi — Q]
Q; — E[Qj]
Qr — E[Qx]

(18)

Q=
VEQA+ EIQA+ E[Q2)+ EQ3)+

Afterward, we need to modify formula 17 to adapt it for handling batch sizes
larger than 1 (where the number of input parameters is m Quaternion inputs
with m > 1). We have:

(Q, — E[Qr]) +(Qi — EQi]) + (Q; — EQ;]) + (Qr — E[Q4])
S (E[QA+ EQI+ E[QI + E[QF]) + e

Q= (19)

Combining formula above with the two parameters v, ; jxy and B j k), We
obtain the complete formula as follows:
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(Q, —EQr]) +(Qi — E[Qi]) + (@ — E[Q]) + (Qk — E[Q4])

Q=
Vi (BIQA+ BIQA+ E[Q2]+ EQ}]) + c

Vi) B, k)

(20)
From the above formula, we can construct the batch normalization method
in the Quaternion number domain.

3.2 Quaternion Fully connected

The fully connected operation is commonly used in neural networks. Its formula
represents a function that reshapes the input to the desired size:

w (17) —w, -V,T +b, (21)

In which, w (Z) is a linear function transforming the input data V., W, is

the weight that transforms V,, into a different size, and b, is the bias parameter.
The Quaternion version simply applies the multiplication operation established
in section 2.3 to formula 21

3.3 Proposed Methods

Proposed Method 1

Transformer Encoder

(Bottleneck) x N

(256, 256)

Conv2D
BatchNorm 2D
Conv2D
Batch Norm 2D

(256, 4, 4) |=| (256, 16, 16)

Batch Norm 2D
Batch Norm 2D
AdaptiveAvgPool2D
Flatten (dim=[2,3]) |

ResNet (Embedding)

Fig. 2. Illustration of Proposed Method 1. The original image is divided into B-patches,
which are then encoded into token codes. These token codes are fed into a modified
ResNet block to encode the input image. The generated tokens are input into the
Transformer Encoder to learn relationships between them.

Proposed Method 1: The proposed method is illustrated in Fig.2 and de-
tailed as follows: Initially, the research team will proceed to eliminate the Patch
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Embedding and Position Embedding components within the Vision Transformer
network.

Transformer Encoder

Embedding
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Fig. 3. The process of replacing the Patch + Position Embedding in the model.

Subsequently, construct a CNN network resembling ResNet and fine-tune cer-
tain aspects to align with the input requirements of the Transformer, as depicted
in Fig.4.

Generate the
Positional Input
Embeddings vectors

(Bottleneck)x N

(256, 256)

Fig. 4. Construction of a ResNet neural network to generate Positional Input Embed-
dings. These embeddings contain both positional information and embedded data.

Once a network model capable of generating embedding vectors containing
position information is constructed, simulating the operation depicted as the
removed component (replacement) in Fig. 3, we can use this network to generate
Positional Input Embeddings. These embeddings perform the transformation of
the input data into a sequence of token embeddings, which are then fed into the
Transformer Encoder.
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Proposed Method 2: The second method is constructed similarly to the first
method (section 3.3.1); however, there are some changes described in Fig.5, as
detailed below:

Proposed Method 2

=
Lx -
v Q = QFC(@)
4 Qk = QFC(@)
Q ke = Layer |
LayerNorm — Q-MHSA W | |
Qv = QFC(Q)
Skip connection
Q-MHSA  Quaternion Multi-Head Self-Attention QFC(.)  Quaternion Fully Connected (Quaternion Linear)

Fig. 5. Illustration of Proposed Method 2. The method involves changing the compo-
nents of the layers to Quaternion. Note that the Quaternion layers reduce the filter
size by a factor of 4 to ensure a fair speed comparison.

Firstly, modify the layers in the Bottleneck block to transition to the Quater-
nion domain, with components described and constructed as follows: "Quater-
nion Domain Convolutional Layer - Quaternion Convolution" and "Quaternion
Domain Normalization Layer - Quaternion Batch Normalization". Additionally,
two additional components, "Real2Quaternion" and "Quaternion2Real", are in-
troduced to transform data between the real domain and the hypercomplex
Quaternion domain.

The conversion formula from the real number domain to the Quaternion
number domain can be constructed as follows:

Q7' = )(4.1'7 *
R2Q (X) = g]:))((f:; i €40,1,2,...} (22)
Qr = X443,

In which, X is the input data, R2Q is the function transforming data from
the real number domain to the hypercomplex Quaternion number domain, and
* symbolizes the remaining dimensions of the data. Here, i is considered as the
index variable for the Quaternion set at the ¢ — th position.

Secondly, modify the layers of the Multi-Head Self-Attention component [5]
in the Transformer Encoder to a version that operates in the Quaternion domain.
We can refer to it as Quaternion Multi-Head Self-Attention (Q-MHSA).

In Q-MHSA, the research team first employs a set of three layers QFC(.)
to transform the segment q into quaternion query Qq7 quaternion key Q, and
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Proposed conversion to Quaternion

(Bottleneck) x N
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. " () EEEE - BN
ConvertQ Real domain \
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Fig. 6. Modification of the bottleneck block components to layers that operate in the
Quaternion domain.

quaternion value @, as described in formula (23) below.

Qe =QFC(q), Q,=QFC(q), @, =QFC(q) (23)
head; = o((Q, ® QF) /Vd) ®, Q, (24)
MultiHead = QFC(Concat(heady . . . head;)) (25)

In which, o (7) = —,fz’7 is the Softmax function, ® denotes the vector
=1

multiplication, d is the dimension of the head, and Concat(.) is the function
concatenating the individual head;.

4 Experimental Results

4.1 Experimental Setup

In this study, the effectiveness of the proposed method is assessed using the accu-
racy evaluation method. The models are implemented on the PyTorch platform,
utilizing the Adam optimizer (Ir = le-3), Cross-Entropy as the loss function (26),
and accuracy evaluation as the experimental evaluation method (27).

Losscg (0) = — Z tilog (p;) (26)
i=1
B (TP +TN)
Accuracy = (TP+FP+TN + FN) 27)
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The aforementioned models are trained on an Nvidia Tesla V100 GPU (Google
Colab Pro) with 16GB of memory. To demonstrate their impact, the research
team utilizes various datasets, including CIFAR10 [15], CIFAR100 [15], GTSRB
[16], and BIRDS 525 SPECIES [17] for evaluation purposes.

4.2 Experimental Results

After the training and testing processes on various datasets such as CIFARI10,
CIFAR100, and GTSRB, the results are aggregated in Tables 1 and 2, demon-
strating the effectiveness of the two proposed methods by our research team.

Table 1. Predicted Results on Training Dataset

Params[CIFARIO[CTFAR100/GTSRB
ViT 1.52M 70.5% 70.5% 98.6%
ViT 4 ResNet 1.69M 92.3% 90.6% 100%
ViT + QResNet + Q-MHSA[0.53M | 85.1% 75.2% 100%

Table 2. Predicted Results on Testing Dataset

Params[CIFAR10[CIFAR100/GTSRB[Bird525
ViT 1.52M 59.27% 32.35% 87.23% [ 65.62%

ViT + ResNet 1.69M 68.62% 38.70% 89.94% [ 75.03%

ViT + QResNet + Q-MHSA[| 0.53M | 69.66% 39.60% [91.62% [76.12%

The results from the prediction table on the training dataset (Table 1) indicate
that the ViT + ResNet combination method yields the best prediction results
across all three training datasets, followed by the ViT + QResNet + Q-
MHSA model. However, upon examining Table 2, it is evident that the ViT
+ QResNet + Q-MHSA’'method performs even better, demonstrating the
potential of this approach to achieve accurate results in subsequent training
sessions.

5 Conclusion and Future Works

In conclusion, the results have demonstrated the influence of Quaternion compo-
nents and the potential of combining the Convolutional Neural Network (CNN)
with the Vision Transformer model by replacing its embedding components.
However, this is just one approach to constructing two different solutions aimed
at improving the accuracy of the Vision Transformer with a small parameter
count. These solutions have not been tested on larger datasets with higher res-
olution and strong correlations. Therefore, in future research, our team aims
to experiment with these solutions on larger datasets, using a larger parameter
count, possibly with the ViT-Large model, to comprehensively demonstrate the
impact of the proposed solutions.
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